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Abstract 
Most of the geodetic measurements are related with the direction of gravity or vertical.  Angular, height difference measurements are 
performed in horizontal coordinate system. Geodetic measurement data are reduced to a uniform coordinate system prior to processing, 
taking into account gravity field nonhomogenity. However, increasing accuracy of geodetic measurements requires to assess deviations of 
the vertical caused by the celestial body effect. The aim of this study is to analyze periodic changes to the direction of the vertical, due to 
effect of the celestial body, and to assess the impact of the closest celestial bodies which have greater impact. Celestial body effect in the 
vertical deflection components in meridian and prime vertical was examined. Zonal and nonzonal wave’s effect and their amplitude was 
investigated and evaluated. Results of this work can be used in precise angular measurements and height difference determination, and in 
the determination of the deflection of the vertical using geodetic astronomy techniques to clarify the shape of the geoid. Results also can 
be used to assess effect of zonal waves of deflection of the vertical.   
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1. Introduction 

Geodetic measurements are performed in the Earth’s gravity field which tend to vary within the time running. The angular 
measurements, determinations of height differences and geodetic astronomy observations are related with the direction of 
gravity or vertical. Direction of gravity at any point on Earth is perpendicular to the gravity field equipotential surfaces. One 
of these surfaces is chosen as the geoid, from which the orthometric heights are calculated. The direction of the vertical is 
determined in respect with the normal to the equipotential ellipsoid i.e. astronomical geodetic deflection of vertical. Also it 
could be determined with respect to the direction of the normal gravity i.e. the gravimetric deflection of vertical.  
The direction of the vertical also can be defined in respect to Earth's equator and the Prime meridian by the astronomical 

coordinates of the points. Gravity and the direction of vertical continuously changes for a variety of reasons [1, 2]. It is 
affected by the shift of Earth's masses, also by changes in the atmosphere and hydrosphere. Earths angular rotation speed 
changes and the movement of the Earth's poles also changes parameters of the gravity field. Significant periodical changes 
of vertical or deflections of vertical are caused by attraction of closer located and heavy weighted celestial bodies. Mainly 
it‘s the Moon and the Sun pull [3]. Increasing accuracy of the geodetic and astronomical measurements [4, 5, 6, 7] requires 
a deeper analysis of the celestial bodies effects on the vertical deviation and more precise assessment of these effects. This 
paper presents the research results of the vertical deviation periodic change due to effects of celestial bodies. The influence 
of the Moon and the Sun to the deflection of the vertical is estimated. 

2. Deflections of the vertical triggered by the celestial body 

Influence of the celestial body on the Earth gravity field can be expressed using tide generating potential. Using the celestial 
equatorial coordinate system, tide generating potential of the non-deformable (rigid) Earth can be expressed by formula [8]: 
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where G – is a gravitational constant; m – is the mass of the celestial body; r – is the geocentric distance to the celestial 
body; R – is the geocentric distance to the point of the Earth‘s surface; Φ – is the geocentric latitude of the point; δ – is the 
declination of the celestial body; t – is the hour angle of the celestial body in respect with the local meridian; )(sinΦnP and 

(sin )nP δ − is the Legendre polynomials; (sin )k
nP Φ   and (sin )k

nP δ  – is the appended Legendre functions. 
Taking into account current accuracy of geodetic measurements, tide generating potential series may be limited to the 

first three members [8]: 
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First members of the tide potential formulas can be used to evaluate the impact of celestial bodies to the direction of 
gravity. 
Vertical deflection can be decomposed into two components: ξ  in the meridian plane, and η  in the prime vertical plane. 

The components of vertical deflection can be expressed using tide generating potential by following equations: 
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where g – is gravity acceleration; Λ – geocentric longitude of the point. For individual tide potential members can be 
written.  
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By differentiating Equations (3)–(5) by latitude we can express vertical deflection in meridian plane by formula:  
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Some members in the above Equations (9)–(11), are dependant only from declination of celestial body and local latitude. 
This is zonal tidal waves in meridian component of the vertical deflection. The remaining members depend from the hour 
angle of the celestial body and represent the tesseral and sectorial tidal waves. The period of these waves changing from day 
till n parts of day. 
Similarly, we will get components of the vertical deflection members at the first vertical:  
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From the Equations (12)–(14) we see, that vertical deviation in prime vertical plane does not have any zonal waves. This 
component of vertical deviation has only tesseral and sectoral waves. Periods of waves depends on the n and hour angle. 
During assessment of the impact of the celestial body on the deflection of the vertical in respect with the surface of the 

Earth, the Earths elasticity coefficient nγ  is used:  
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If we want to assess the impact of the celestial body on the deflection of the vertical in respect with the rotation axis of 
the Earth, the Earths elasticity coefficient nβ  is used: 
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Other Earth elasticity coefficients are expressed using the following equations: 
 1n n nk hγ = + − ,    (19) 
 1n n nk lβ = + − , (20) 

where nk , nh  ir nl  – Love numbers (Table 1). 
Table 1. Love numbers [9] 

n nk  nh  nl  nγ  nβ  
2 0.2993 0.6053 0.0841 0.6946 1.2152 
3 0.0925 0.2890 0.0147 0.8036 1.0778 
4 0.0417 0.1758 0.0101 0.8654 1.0316 
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3. Zonal waves of the vertical deviation 

All fi We will examine the impact of tidal potential zonal waves on vertical deviation component in meridian. This impact 
can be expressed by the formula: 
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We will evaluate functions depending on δ by taking its mean integral values. For that purpose we will use relation of 
declination with celestial body longitude in orbit λ and deviation of the orbit on the equator ε. The relation is described by 
equation: sin δ = sin ε sin λ. By adopting that longitude of celestial body vary from 0 to 2π, we will get mean integral values 
ofδ function: 
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Using received mean values we will get following zonal waves of vertical deviation:  
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In the above formulas we can exclude the zonal wave depending only on the latitude. 
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This part of the zonal wave of the vertical deviation in meridian plane is not changing over the time and expresses 
permanent part of vertical deflection influenced by the celestial body. 

4. Evaluation of the zonal wave in vertical deviation 

Using the (26) and (19) equations we will get the formula for a permanent vertical deviation in respect with the surface of 
the Earth: 
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Permanent zonal wave effect on the vertical deviation, depending on the latitude, when using the maximum distance 
from the celestial body (406 700 km for Moon and 152 097 701 km for Sun) is presented in the figure 1. (selenocentric 
constant of gravity – MGm = 4902,799 3 2km s−  heliocentric constant of gravity – SGm =  132 712 440 018 3 2km s− , 
ellipsoid GRS80). It should be noted that the vertical deviation doesn’t have a permanent part at the first vertical. Therefore 
only permanent part of deviation at the meridian is analyzed.  
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 Fig. 1. Permanent change of deflection of vertical in meridian (n = 2, 4) 

The research shows that a permanent vertical deviation in the meridian, changes from 0"at the poles and equator; to 
±0.0051" when the latitude is ±45°, due to impact of the Moon. The impact of the Sun is smaller and these deviations could 
vary from 0 " at the poles and equator to ± 0.0026" when the latitude is ±45°. The total effect of the both celestial bodies is 
causing permanent vertical deviation which depends only from latitude. The ranges of this deviation could vary from 0" at 
the poles and equator to ±0.0077" when the latitude is ±45°. From the southern to the northern part of Lithuania the 
permanent vertical deviation caused by both celestial bodies is changing from 0.0073" till 0.0071". 
Using the function of the average integral celestial body declinations, by the (25) and (19) formulas we can write an 

equation for vertical deviation at the meridian.  
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The zonal wave effect on the vertical deviation at the maximum and minimum distance from the celestial body (the 
minimum distance to the Moon 356 400 km and to the Sun – 147 098 074 km) is presented in Figure 2.  

 Fig. 2. Deflection of vertical caused by zonal function for elastic Earth (n=2, n=4) 

Results of research shows, that vertical deviation in the meridian is equal to zero at the poles and the equator. When the 
geocentric distance to celestial bodies is biggest, the vertical deviate up to ±0.0054" at the latitude of ±45°. The vertical 
deviation in the meridian, when the geocentric distance to the Moon and to the Sun is smallest, is equal zero at the poles and 
equator. Deviation of vertical reaches ±0.0072" at the ±45° latitude.  Changes of geocentric distance to celestial bodies can 
change vertical deviation range up to 0.0016" because of the Moon effect and 0.0002" because of the Sun effect.  
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5. Conclusions 

1. Based on the theory of tide potential, the effects of the celestial body to the vertical deviation in the meridian and prime 
vertical were investigated. The finite equations for each member of the tidal potential were received. The zonal waves of 
the vertical deviation, depending from the latitude and declination and geocentric distance of celestial body, were 
derived separately.  

2. The effects of the zonal waves were estimated taking into account the elasticity of the Earth, using the derived formulas. 
The direction of the vertical is changing in range of 0,0077′′± . Permanent vertical deviation, depending on influence of 
both celestial bodies, is changing from 0,0071" till 0,0073" in territory  of Lithuania.  

3. Received results can be used in the precise angular and height difference measurements. Also it can be used in 
determination of the vertical deviation by geodetic astronomy methods as well as in selecting equipotential surface of the 
gravity field to define the shape of geoid surface  
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